Web Usage Mining with Web Logs

نویسنده

  • Xiangji Huang
چکیده

With the rapid growth of the World Wide Web, the use of automated Web-mining techniques to discover useful and relevant information has become increasingly important. One challenging direction is Web usage mining, wherein one attempts to discover user navigation patterns of Web usage from Web access logs. Properly exploited, the information obtained from Web usage log can assist us to improve the design of a Web site, refine queries for effective Web search, and build personalized search engines. However, Web log data are usually large in size and extremely detailed, because they are likely to record every aspect of a user request to a Web server. It is thus of great importance to process the raw Web log data in an appropriate way, and identify the target information intelligently. In this chapter, we first briefly review the concept of Web Usage Mining and discuss its difference from classic Knowledge Discovery techniques, and then focus on exploiting Web log sessions, defined as a group of requests made by a single user for a single navigation purpose, in Web usage mining. We also compare some of the state-of-the-art techniques in identifying log sessions from Web servers, and present some popular Web mining techniques, including Association Rule Mining, Clustering, Classification, Collaborative Filtering, and Sequential Pattern Learning, that can be exploited on the Web log data for different research and application purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Web Usage Mining: users' navigational patterns extraction from web logs using ant-based clustering method

Web Usage Mining is the process of applying data mining techniques to the discovery of usage patterns from data extracted from Web Log files. It mines the secondary data (web logs) derived from the users' interaction with the web pages during certain period of Web sessions. Web usage mining consists of three phases, namely preprocessing, pattern discovery, and pattern analysis. In this paper, w...

متن کامل

Online and Incremental Mining of Separately-Grouped Web Access Logs

The rising popularity of electronic commerce makes data mining an indispensable technology for business competitiveness. The World Wide Web provides abundant raw data in the form of web access logs, web transaction logs and web user profiles. Without data mining tools, it is impossible to make any sense of such massive data. In this paper, we focus on web usage mining because it deals most appr...

متن کامل

Effective web log mining and online navigational pattern prediction

The web has become the world's largest repository of knowledge. Web usage mining is the process of discovering knowledge from the interactions generated by the user in the form of access logs, cookies, and user sessions data. Web Mining consists of three different categories, namely Web Content Mining, Web Structure Mining, and Web Usage Mining (is the process of discovering knowledge from the ...

متن کامل

Comprehensive Survey of Framework for Web Personalization using Web Mining

World Wide Web is a global village and a rich source of information. The number of users accessing web sites is increasing day by day. For effective and efficient handling, web mining coupled with recommendation techniques provides personalized contents at the disposal of users. Web Mining is an area of Data Mining dealing with the extraction of interesting knowledge from the World Wide Web. Wh...

متن کامل

Efficient Discovery of Frequent Patterns using KFP-Tree from Web Logs

Frequent pattern discovery is a heavily focused area in data mining. Discovering concealed information from Web log data is called Web usage mining. Web usage mining discovers interesting and frequent user access patterns from web logs. This paper contains a novel approach, based on k-mean and frequent pattern tree (FP-tree), for frequent pattern mining from Weblog data.

متن کامل

Issues of Learning the Browsing Language

The web is pervading all walks of life and its huge increase in information volume has made the web personalization mandatory. Web Personalization may be achieved by web mining especially the web usage mining technique on the surfing behavior. Learning the surfing behavioral pattern has emerged into a promising research area to achieve web personalization. Till recently web usage mining was don...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009